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[ Chapter five }

Multiple Integrals

In this chapter we consider the integral of a function of two variables
f(x,y) over a region in the plane and the integral of a function of three
variables f(x,y,z) over a region in space. These integrals are called
multiple integrals

Double integrals:

Double integrals over rectangles:

We begin our investigation of double integrals by considering the simplest
type of planar region, a rectangle. We consider a function f(x,y) defined

on a rectangular region R ,
R: a<x<b,cLy<d

We subdivide R into small rectangles using a network of lines parallel to
the x and y- axes. The lines divide R into n rectangular pieces, where the
number of such pieces n gets large as the width and height of each piece
gets small.

dk
R
A Ay
)
Ay | 7 &~ )

A.);k

t‘: —
| [

0 a b

These rectangles form a partition of R . a small rectangular piece of width
Ax and height Ay has area A4 = AxAy

If we number the small pieces partitioning R in some order, then their areas
are given by number A4;,A4, , ...., A4

n

Where A4, is the area of the &y, small rectangle.
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To from a Riemann sum over R , we choose a point (x;, y; ) in the kg,
small rectangle, multiply the value of fat the point by the area A4, , and
added together the products:

n
Sy =) [l y)A,
k=1
lim X, v, )AA
n_m;f( ko Vi )AAy

When a limit of the sums S, exists, giving the same limiting value no

matter what choices are made, then the function f'is said to be integral and
the limit is called the double integral of f over R , written as

f f f(x,y)dA or j j f(x,y)dxdy

Double integrals as volume:

When f(x,y) is a positive function over a rectangular region R in the xy —
plane, we may interpret the double integral of f over R as the volume of the
3- dimensional solid region over xy — plane bounded below by R and
above by the surface z = f(x, y)

—_— 1
1
~ ||
;
=h
=
—

(.\'_;\.. Yr ) A4 k

Each term f(x;,y;)A4; in the sum §, = Zf(xk,yk)AAk is the volume

of a vertical rectangular box that approximates the volume of the portion of
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the solid that stands directly above the base A4,. The sum S, thus

approximates what we want to call the total volume of the solid. We define
this volume to be

n—->o0o

volume = lim S,, = f j f(x,y)dA
R

Where A4, -0 as n—

Fubini's theorem for calculating double integrals:
Suppose that we wish to calculate the volume under the plane z=4—-x—y

over the rectangular region R: 0<x<2,0<y<]1

xX=2

'[ A(x)dx _ 4

x=0

Where A(x) is the cross — sectional area at x

For each value of x , we may calculate A(x) as the
Integral:

y=1
Ax) = f (4 —x — y)dy
y=0

x=2 x=2 [/ y=1
volume = A(x)dx = (4—x—y)dy |dx
xlo xl() yIO
x=2 y2 y=1 x=2 (1)2
= !4)/ - Xy — 7] dx = [(4)(1) - ()@ - >~ 0ldx
= 0

x=0 y=0 x=
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= (4—x—L)dx— (l—x)dx

- - 2

x=0 x=0

7 X 7 2?2 | 14 4 10
-lzx‘7]0—[<z><2>‘ 2~ ]—7‘2——7—5

If we just wanted to write a formula for the volume, without carrying out

any of the integrations, we could write
21

volume = j j(4 —x —y)dydx
00

The expression on the right, called an iterated or repeated integral

Fubini's theorem (first form)

If f(x,y) is continuous throughout the rectangular region
Ria<x<h ,c<y<d

Then

..... d

_[ EEf(x,)/) dA:Jff(x»Y)dxdy:ffdf(x,y)dydx

R C c
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Example: Calculate
[ | reyas
R
for f(x,y)=1—6x2y and R: 0<x<2,-1<y<1
Solution: by fubini's theorem:

jjf(xy)dA— jJ(1—6x y)dxdy = f[x—6x y] B dy

-10

= [e-2xyiziay = f(z—(z)(Z) y)dy

1
= [12-16y1ay

16y3]"
=! > ] = [2y — 8y?]L,
-1

- (@0 -®0%)- (@D -©)-1?)

=(2-8)—(-2-8)

= (=6)=(-10)
=—6+10=4

Reversing the order of integration gives the same answer
2

f f(l — 6x%y)dydx = j [y _ 6x2y 2];_1 dx = j[y 3xy? ]y__1 dx

0

= .].[(1 —3x%) — (=1 —3x?)] dx
0
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2

=f(1—3x2+1+3x2)dx
0

2

= dex = [2x]3

0

= (2)(2)-0=4

Example: Evaluate the integral
f j(l + 8xy)dydx
01

Solution:

8xy2]”
y + Zy] dx
y=1

2 3
f(l + 8xy)dydx = j
1

0

o"w

[y + 4xy? ] dx

Il
O\aw

[2+ @) — 1+ HE)(D)*)] dx

Il
o\aw O\w

12x2]°
=f(1+12x)dx= [x+ > ]
5 0
=[x +6x2]3 = 3+ (6)(3)> —0)
=3+54 =57

114
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Example: Evaluate the integral

Ofoj(x + 3)dydx

Solution:
1 2 1

f f(x + 3)dydx = j[xy + 3y]§,’:§dx
0

0 0

= j(Zx + (3)(2) — 0)dx
0

= j(Zx + 6)dx
0

2x? !
N 6x] = [x* + 6x]5
0

=[1+(6)(1) = 0]

=1+6=7
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Example: Evaluate the integral
2

| [@=y»ayax
00

Solution:

3 2 3 gqy=2

f f(4 — yHdydx = j [4)/ — y? dx

00 0 y=0

f ((4)(2) - (27)3) dx
0
_ ‘ __ ‘ 24 8
[ 5

H.W: Evaluate the integral

3 0 0 1
1. f f(xzy — 2xy)dydx 2. f f(x + y + 1)dxdy
0 S15
3 1 41
3. jj(Zx—éLy)dydx 4, j]xzydxdy
1 -1 2 0
2w @

5. f f (sinx + cosy)dxdy

T 0
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Double integrals over bounded nonrectangular regions:
To define the double integral of a function f'(x,y) over a bounded,

nonrectangular region R ,

C R | \
Sn - Z f(xk » Vi )AAk Ay ") ‘l
k=1 \ Ax, jJ
lim , A4=jj ))dA S
M%;ﬂxk M= ] | G e

| [ranaa=| [ renaa+ | [ reoraa

R, / R=R UR,

0

([ 70,39 dat = [[ i) dt + [ fix, ) da

R R Ry
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Fubini's theorem (stronger form):
Let f(x,y) be continuous on a region R

1.IfRisdefineby a<x<b , g,(x)<y < g,(x), with g;and g
continuous on [a,b] , then:

b g2(x)
[[rawaa=[ | randyis
R a g1(x)

2.IfRisdefineby c<y<d , h(y)<y<hy(y),with 4;and 4,
continuous on [a,b] , then:

d h2(y)
| [ rwmaa=[ [ reyxy
R c hi(y)
i z=flx,»)
/ Height = flxg, v)
0
//
X

¢ Ty v
‘ ]
|
I
|
I
I
i1

R :

/ \\
(g, Vi) — - a_{k
:
z = fix,¥)
I'l| 0
a__— \
BT 3
b __— , R \.
y = g,{x'fl'a_\ N\ y
\.\\‘R
\\\2 I,
y = gz{xl
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Example: Find the volume of the prism whose is the triangle in the xy —
plane bounded by the x — axis and the lines y =x and x =1
and whose top lies in the plane z = f(x,y)=3—-x—y

{0.0,.3)
¥ x=1
S¥V=x .
” — z=Ju
/ Ve / =3-3-)
y=X
AN
v * \'1,/ —~x=1 (1.0.2)
f‘- A F
" R 4 R
.f"’
: 4 - x
0 v =0 1 0 |

Solution: from the figure , for any x between 0 and 1, y may vary from
y=0to y=ux,hence
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When the order of integration is reversed the integral for the volume is:

11 1 N =1
X
v=jf(3—x—y)dxdy=f[3x—7—xy] dy
0y 0 =

J[o-3) (5o

1 y? 5
f@—m——y—%H"—+y)dy
2 2
0

1
—fS ty+ > y?yd
= Q y Zy)y
0

5 4y? 3y3 y=1 5 N y3 1
o PO RN
y=0 0
_0 2+1
T2 2
_5 2=3-2=1
== — —
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Example: Calculate

=

Where R is the triangle in the xy — plane bounded by x — axis, the line
y =x and the line x =1

Solution:

= [—cosx]}y = [ cos(1) — (—cos0)]

= —cos(1) +1 =046

If we reverse the order of integration and attempt to calculate:

11

sinx
f f dxdy
0y
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H.W: Evaluate the integral

11 2
1. jszexydxdy 2. .[
0y 1

Finding limits of integration:

We now give a procedure for finding limits of integration that applies for
many regions in the plane. Regions that are more complicated, and for
which this procedure fails, can often be split up into pieces on which the

procedure works.
[ [ reyas
R

When faced with evaluating
integration first with respect to y and then with respect to x , do the
following:

1. Sketch. Sketch the region of integration and label the bounding curves.

2. Find the y — limits of integration. Imagine a vertical line L cutting
through R in the direction of increasing y. mark the y — value where L
enters and leaves. These are the y — limits of integration and are usually
functions of x (instead of constants)

l Leaves at
/ y=V1-—x?

. Enters at
. y=1—-x
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3. Find the x — limits of integration. Choose x — limits that include all the
vertical lines through R. the integral shown here is:

x=1Yy=V1-x2
[[r@naa= [ [ reyaya
R x=0 y=1-x
¥ Leaves at
/ y=VI1-x2

_ Enters at
y=1—x

L
-
0 x I
/
Smallest x Largest x
isx=0 isx=1

To evaluate the same double integral as an iterated integral with the order
of integration reversed, use horizontal lines instead of vertical line in step 2
and 3. The integral is

1v1-y?
ff f(x,y)dA = f f f(x,y)dxdy
R 0 1-y
Largesty ¥
isy=1 | Enters at
™~ x=1-y
y \
Smallest y - Leaves at i
isy=0 x=V1-3?
h > X
0 1
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Example: Sketch the region of integration for the integral
2 2x

J j (4x + 2)dydx

0

and write an equivalent integral with the order of integration reversed.

Solution: the region of integration is given by the inequalities
2<y<2x and 0<x<2

It is therefore the region bounded by the curves y = x* and y = 2x
Between x =0 and x =2

To find limits for integrating in the reverse order, we imagine a horizontal
line passing from left to right through the region. It enters at x = % and
x=4/y to include all such lines, we let y run from ¥ =0 to y =4 . the

integral is
4 Vy

f f (4x + 2)dxdy - the common value of these integral is 8

0 J//Z
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Properties of double integrals:
It f(x,y) and g(x,y) are continuous, then:

1. constant multiple:

fRfcf(f(x,y)dAchk[f(x,y)dA (any number c)

2. sum and difference:

| [own+aammaa= | [ feyda® g yas

3. Domination:

a. ij(x,y)dAZO if f(x,y)=0 on R
R

b [ [ feowaaz [ [ geunda if fey = g0y on R

4. Additivity:

[ [ rawaa=| [ renaa+| [ feyaa
R Rq R,

If R is the union of two non-overlapping regions R; and R,
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Area, moment and centers of mass:

Areas of bounded regions in the plane:
The area of a closed, bounded plane region R is:

Example: Find the area of the region R bounded by y =x and y = x?
the first quadrant.

Solution: we sketch the region, nothing where the two curves intersect and
calculate the area as:
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Example: Use a double integral to find the area of the region R enclosed

between the parabola y = %xz and the line y =2x

Solution:
4 2x 4 oy
sl 4.9
area = f f dydx = j [yl x22 dx /
0 xz/z 0 J':Z\;H,/;;ij
- *"/‘ J\=l\
= ] 20— )4 :
° T
0 x 4
2x2 x3 4 x3 4 (@
- —_ xZ -
2 6 ] [ 6
0 0
= [(4) —|= -
96 —64 32 16
6 6 3
or
g 2y 8 | .
area = j dxdy = j [x]z/z?dy y
8 /f {;’_\,:m
=j(\/2_—z)dy Y 4
2 t
0 0 J;

(b
3 2 _ 7 3/2 _ (8)2
/ ] (8) / 4
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Moment and centers of mass for thin flat plates:
Mass and first moment formula for thin plates covering a region R in the
Xy — plane:

Mass: M = J j 6(x,y)dA &(x,y)is the density at (x,y)
R

First moments: M, = f fy@(x,y)dA M, = jfo(x,y)dA
R R

Cent e= L
enter of mass: X=o0r » V=7

Example: A thin plate covers the triangular region bounded by the x — axis
and the line x =1 and y =2x in the first quadrant. The plate's

density at the point (x,y) is J(x,y)=6x+6y+6 . find the

plate's mass, first moments and center of mass about the
coordinate axes.

Solution: We sketch the plate and put in enough detail to determine the
limits of integration for the integrals we have to evaluate:

2

2X 1 2x

1
M=]] 6 (x,y)dydx = fj(6x+6y+6)dydx
00 00

2 y=2x

1 1

y =

— f [6xy -+ 6y] dx = j[6xy +3y?% + 6y];=§xdx
0 y=0 0

[(6x)(2x) + (3)(2x)* + (6)(2x)]dx

Il
ot
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1

= j(leZ + 12x?% 4+ 12x)dx

0

24x3  12x2]"
= j(24x2 + 12x)dx = 2 T
0

= [8x% + 6x%]5 = [(8)(1) + (6)(1)] = 8 + 6 = 14

The first moment about the x — axis is:
1 2x 1 2x

M, =fj y6(x,y)dydx = J-f y(6x + 6y + 6)dydx

2X

f (6xy + 6y2 + 6y)dydx
0

O\H—i

fTexy? 6y 6y 1
:j[ 2}/ + ?,: + g] dx j[?)xy +2y° + 3y?) 25 dx
0 y=0 0

_ f [(32) (22)? + (2)(22) + (3)(2x)]dx

= j(12x3 + 16x3 + 12x%)dx = j(Z8x3 + 12x?)dx

[ ] [7x* + 4x3]}
=[(7M(@1) + (4)(1)] =74+4=11
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A similar calculation gives the moment about the y — axis:

2x 2x

1 1
M, =jj x6(x,y)dydx =JJ x(6x + 6y + 6)dydx
0 0 00

2x

j (6x2 + 6xy + 6x)dydx
0

O\H

, 6xy? y=ax
6x°y + > + 6xy dx
y=0

O\H

— f[6x2y + 3xy? + 6xy]§,’:(2)x dx
= j[(6x2)(2x) + (3x)(2x)% + (6x)(2x)]dx
0

= f(le3 + 12x3 + 12x?)dx

24x%  12x31

= | (24x3 + 12x%)dx =
j(x+ x4)dx [4+3

0

= [6x*+4x3]; = [(6)(1)+ (H)(D]=6+4=10

The coordinates of the center of mass are therefore:

M, 10 5
X —— = — —_
M 14 7
oM, 11
Y=M " 1a
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Moment of inertia:

Moment of inertia (second moment):

About the y — axis:

L, = ff y26(x,y)dA

About the y — axis:

I, = ﬂ x28(x,y)dA

About a line L :

L= || Penscanda

Where r(x, y) = distance from (x, y) to L

About the origin:
Iy = f (x*+y?)8(x,y)dA =1, + I,

Radii of gyration:
About the x —axis: R, =,|—-
M
About th < g oo D
out the y — axis: =. |2
y y v;

1

About the origin: R, =
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Example: A thin plate covers the triangle region bounded by the x — axis
and the lines x =1 and y =2x in the first quadrant. The plate's

density at the point (x,y) is d(x,y)=6x+6y+6 . find the

moment of inertia and radii of gyration about the coordinate
axes and the origin.

Solution:
moment of inertia about the x — axis is:

1 2x

1 2x
L, = jj y26(x, y)dydx = jj y? (6x + 6y + 6)dydx
0 0

1 _
6xy? 6y* 6y3]7
3 4 3
0 y=0
1 y=2x
f!ny +— +2y ] dx
0 y=0

- f [(2x)(2x)3 + (;) (2x)* + (2)(2x)3l dx
0

1 1
3
= f (16x4 + (E) (16x*) + 16x3) dx = J(16x4 + 24x* + 16x3) dx
0

0

40x5  16x*]"
e [8x° + 4x*]§

0

= j(40x4 + 16x3)dx = l

=[(8)(1)+(4)(1)]=8+4=12
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The moment of inertia about the y — axis is:
1 2x 1 2x

=fJ x25(x,y)dydx=Jj x? (6x + 6y + 6)dydx
0 0 00

2x

1
= jf (6x3 + 6x%y + 6x%)dydx
00

2..2 y=2x
x
+ 6x%y dx

[6x y+ >

o‘\’_\

= f[6x3y +3x%y? + 6x%y]) g X d

f [(6x3)(2x) + (3x2)(2x)% + (6x2)(2x)|)Zg " dxx

= f(le4 + 12x* + 12x3) dx

= 1(24364 + 12x3) dx

1

 [24x8 N 12x4T"  [24x8
B | 5

4
c 2 +3x]

0

-[(5)wr @] =S-S5

133
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The moment of inertia about the origin:

I, = f j(xz +y2)8(x,y)dydx = I, + I,

, _12+39_60+39_99
o 5 5 5

The three radii of gyration are:

T e
M N4 V7
R, _,/ \/39/5_ 2 _0.746

\/ 99/5_ 2 1189
M 70

1. Find the center of mass and the moment of inertia and radius of
gyration about the y — axis of thin rectangular plate cut from the first

quadrant by the lines x =6 and y=11f 6(x,y)=x+ y+1

2. Find the moment of inertia and radius of gyration about
the coordinate axes of a thin rectangular plate of constant density o
bounded by the lines x =3 and y =3 in the first quadrant.
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Centroid of geometric figures:

When the density of an object is constant, it cancels out of the numerator
and denominator of formulas for ¥ and y. as for as X and ) are
concerned, 6 might as well be 1 thus, when ¢ is constant, the location of
the center of mass becomes a feature of the object's shape and not of the
material of which it is made. In such cases, engineers may call the center of
mass the centroid of the shape. To find a centroid, we set 6 equal to 1 and
proceed to find X and yas before, by dividing first moments by masses.

Example: Find the centroid of the region in the first quadrant that is
bounded above by the line y = x and below by the parabola

y=x

Solution: we sketch the region and include enough detail to determine the
limits of integration. We then set 6 equal to 1

1 b

1 x ;
= | [ 1yt = [ o
0

x? y=x
o/y=x>
2 x2 %31 | .
=f(x—x2)dx= 53 0 X
0 0
_1 1_3—2_1
2 3 6
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I @bzl )

o= (5-5)e

From these values of M , M, and M, , we find:

)
_ M, [12 _6 _
12

X = = =

A

i

Sy

1
2

§

_6_2
15 5

*. the centroid is the point (%,%)

136
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Double integrals in polar form

Integrals in polar coordinates:
Suppose that a function f(r,8) is defined over a region R that is bounded

by the rays 6 = « and 6 = £ and by the continuous curves r = g;(0) and
r = g,(0) . suppose also that 0 < g,(0) < g,(0) < a for every value of
between o and £ . then R lies in a fan — shaped region Q defined by the
inequalities 0<r<ag and a <0< f

We number the polar rectangles that lie inside R (the order does not
matter) calling their areas A4, , A4, , ...... , A4, , we let (1,6, )be any

point in the polar rectangle whose area 1s A4, . we then form the sum

S, =Y [(.0,)A4;
k=1

If f'1s continuous throughout R, this sum will approach a limit as we refine
the grid to make Ar and A@ go to zero. The limit is called the double
integral of fover R. in symbols,

1lli_r>£105n:jjf(r,9)dA
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Area in polar coordinates:
The area of a closed and bounded region R in the polar coordinate plane is:

=ffrdrd9
R

Example: Find the area enclosed by r? =4co0s20

¥ Leaves at
= %d4cos2#

/.

Enters at N - rf = 4cos 26
F=10 Yy
Solution:
/4 \/4cos26 /4 oy Jicos20
A= 4[ j rdrd0—4f[ ]
/4
=4 f 2¢0520d6 = [4sin20]7/* = 4
0
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Triple integrals in rectangular coordinates:

triple integrals:
If f(x,y,z) 1s a function defined on a closed bounded region D in space,

such as the region occupied by a solid ball or a lump of clay, then the
integral of " over D may be defined in the following way. We partition a
rectangular boxlike region containing D into rectangular cells by planes
parallel to the coordinate axis

We number the cells that lie inside D from 1 to n some order, the itk cell
having dimensions Ax; by Ay, by Az, and volume AV} = Ax; Ay, Az, .
we choose a point (x;, y;, z; ) in each cell and form the sum

n
Sn :ZF(xkaykazk)AVk

k=1

The triple integral of F over D :

lim S, =fij(x,y,z)dV
n—-oo
D

or

|p||qo JffF(x y, z)dxdydz
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Volume:
The volume of a closed, bounded region D in space is:

o= [ [

Example: Evaluate the integral
y—x

11
J j dzdydx
0 x

0

Solution:
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Example: Evaluate the integral
11-y 2

fj fdxdzdy
00 0

Solution:

1-y

2 11-y
j j dxdzdy = f j [x]%Z% dzdy
0 0 0 0

11-y

ff 2dzdx—f [22]72.77 dy
0 0

1

1

<
o\»—t

=j2(1—y)dy=j(2—2)’)dy

0 0

2
0

2y !
= [23/ -— =12y -y’

=2-1=1

141

‘;ALM: Az 2 :J\J‘;“



3l rigl) o [ claly )

Example: Evaluate the integral
1-z

2
f f dydxdz
00

O\r—\

Solution:
1 21—

v=]]]
000

= jf(l — z)dxdz = f[x — zx|¥Z% dz
0 0

0

Z

1 2

dydxdz = f j [y1§77 dxdz
00
1

1
1
27%

= f(z —2z)dz = [2z—7 = [2z - 2*]g

0 0

=2-1=1

142

‘;ALM: Az 2 :J\J‘;“



Al Bl o 11 sty ) Y

Example: Evaluate the integral
111

fff(xz + y? + z%*)dzdydx
00 0

Solution:
111 11 a1
V=jff(x2+y2+zz)dzdydx=fj[x z+y? z+? dydx
000 00 z=0

11
=ffx+y+ dydx
00

H.W: Evaluate the integral:

V2 3y 8—x%-y?

L[ [ e

0 0 x2+3y2

1
2 |
0

1-x

|

1 1 1

3. f j j(x +y + z)dydxdz

-1-1-1

1
f dydzdx

x+z
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Masses and moments in three dimensions:

Mass and moment formulas for solid objects in space:

Mass:

M = f f f(SdV (6 = 6(x,y,z) = density)

First moments about the coordinate planes:

o= [ f v
o= [ [ar
o= | fssa

Center of mass:
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Moments of inertia (second moments) about the coordinate axes:

I, = Jjj(yz + z2)6dV
I, = j j j(x2 + z%2)8dV
I, = j j f(x2 + y2)8dV

Moments of inertia about a line L:

w= [ [ [ resav

(r(x, y,z) =Distance from the point (x, y, z) to the line L)

Radius of gyration about a line L:
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Example: Find I, , I, , I, for the rectangular solid of constant density &

shown in the figure

—_—>

\ | ]
/ Center of
/ @ block
b

> ¢
Solution: the rectangular solid consists of eight symmetric pieces, one in
each octant. We can evaluate the integral on one of these pieces
and then multiply by 8 to get the total value

c/2b/2 a/2
=8j J j (y? + z2) §dxdydz
0 0 0

c/2b/2

=86ff[y x + z%x];_ a/zdydz
0 0

c/2b/2

— 86 f f [(yz)(%)+(zz)(%)]dydz

0 o0

c/2b/2 c/2b/2
8a6
j.[ y? + z2 dydz-4a5[j y? + z%]dydz

c/2 y=b/2

_4a5j [—+z y] dz

=0
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= 4aé 72 [(b/32)3 + (2%) (g)] dz

c/2

—45[ LA
- "a 24" 2 |

0

b3z z3p]?

= 4a8 |—
a6_24+ 5

0

= 4ad

(b*)(c/2) N (c/2)°b
24 6

— 445 b3c+c3b _ 4abcé b2 4 o2
=40\ gt 75 ) T g 07+ )

abcd
===

M
(b? + ¢c?) = E(b2 + ¢?)

c/2b/2 a2

Iy=8j jj(x2+zz)5dxdydz
0 0 0

c/2b/2 x=a/2

3
=86jj ?+sz dydz
0 0

x=0

c/2b/2

=86 f J [(a/?)zf +(2%) (%)] dydz

147

‘;an Az 2 :J\J‘;“



Al Bt o 11 sty ) Y

c/2b/2

o [ (55 o

c/2b/2 c/2b/2
8a5]j 2dd—45jja2+2dd
1 +7° |dydz = 4a ;T2 |dydz
0 O
c/2

y=b/2
] dz

= 4a6f [—+z y
= 4aé sz [(612)1(+2) + (2%) (g)‘ dz
0

—4a5] [—+— dz

4ab5 j

73 c/2
+z] dz = 2abd —+—

0 0
I C c\3
@ (3) (5)

= 2abd 12 + 3

_ oaps |4 &

— %024 T2

2abcd abcd
_ 2 2\ — 2 2
= (a“ +c%) = 17 (a“ + c*)

M
L = — 2 2
y 12(a + c4)
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c/2b/2aj2
=8f j J (x2 + y?) 8dxdydz

0O 0 O

c/2b/2 x=a/2
—86f f [—+y x] dydz

x=0

c/2b/2 3
_ (a/2) 2 (@

0 O

c/2b/2 c/2b/2

—85jf @ L YA —8a6jj L 2 ) dyd
= 24 Ty )HY42 Y dvdz
0 O
c/2

3yb/
—45j[ ] dz
c/2

c/2
_ (a®)(b/2) (b/2)3 _ a’b b3
—4a6j [ 1 + 3 ]dz-4a5f <—24 +ﬁ>dz
0

0
c/2

f (@? + b2)dz

0

e IO MEIE)

B 4abd
24

6
_abs a2c+b2c abc6( 2 4 b2)
~ 6 \ 2 "2 ¢

M
IZ = E(az + bz)
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H.W: Find the center of mass of a solid of constant density 6 bounded

below by the disk R: X%+ y2 <4 1in the plane z = (0and above

by the paraboloid z =4 - x? - y2

|
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